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Summary 
 
After the introduction of coordinates, it became possible to treat figures in plane and 
space by analytical methods, and calculus has been the main means for the study of 
curved figures. For example, one attaches the tangent line to a curve at each point. One 
sees how tangent lines change with points of the curve and gets an invariant called the 
curvature. C. F. Gauss, with whom differential geometry really began, systematically 
studied intrinsic geometry of surfaces in Euclidean space. Surface theory of Gauss with 
the discovery of non-Euclidean geometry motivated B. Riemann to introduce the 
concept of manifold that opened a huge world of diverse geometries. Current 
differential geometry mainly deals with the various geometric structures on manifolds 
and their relation to topological and differential structures of manifolds. Results in 
linear algebra (Matrices, Vectors, Determinants and Linear Algebra) and Euclidean 
geometry (Basic Notions of Geometry and Euclidean Geometry) are assumed to be 
known as aids in enhancing the understanding this chapter.  
 
1. Curves in Euclidean Plane and Euclidean Space 
 
Plane curves 
A curve c  in Euclidean plane 2\  with orthogonal coordinates 1 2( )x x,  is regarded as 
the locus of a moving point with time and given by a parametric representation 
 

1 2( ) ( ( ) ( ))t x t x t a t b= , , ≤ ≤ .x         (1) 
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It is assumed that functions 1 2( ) ( )x t x t,  are of class kC ( 2)k ≥  and the tangent vector 

1 2( ) ( ( ) ( ))t t tx x= ,x� � �  to c  is nonzero at each t . Then the tangent line to c  at 0( )tx  is 
given by 0 0( ) ( )t t t t+x x�6  in vector notation. The arc length ( )s t  and the length ( )L c  
of c  are defined as  
 

2 2
1 2( ) ( ) ( ) ( ) ( ) ( ) ( )

t t b

a a a
s t t dt t t dt a t b L c t dtx x= = + ≤ ≤ , = .∫ ∫ ∫x x� �� �   (2) 

 
Indeed, the length ( )L c  doesn’t depend on parameterizations of a curve. Since ( )s s t=  
is a strictly increasing function, one may take the inverse function ( )t t s=  and gets a 
new parametric representation ( ) ( ( ))s s t s→ =x x  of c  by arc length s  for which 

( ) 1s ≡x�  holds. Setting 1( ) ( )s s=e x�  and 2 12 ( ) ( ( ) ( ))s s sx x= − ,e � � , a unit normal vector to 

c  given by rotating 1( )se  through 90D  counterclockwise, one obtains a (positive) 
orthonormal basis 1 2{ ( ) ( )}s s,e e  called the Frenet frame of c  at each ( )sx .  
 
Curvature 
Let ( ) 0c s s L: = , ≤ ≤x x  be parameterized by arc length. Then the acceleration vector 

1 2( ) ( ( ) ( ))s s sx x= ,x�� �� ��  of c  is orthogonal to ( )sx� , and one may write 

1 2( ) ( ) ( ) ( )s s s sκ= =x ee�� � , where 1 2 2 12( )( ( )) ( ) ( ) ( ) ( ) ( ) ( )cs s s s s s s sx x x xκ κ= = , = −x e�� � �� � ��  is 
called the curvature of c  at ( )sx . Setting ( ) 1 ( )s sρ κ= /  if ( ) 0sκ ≠ , the circle centered 
at 2( ) ( ) ( )s s sρ+x e  (center of curvature) of radius ( )sρ  is tangent to c  of second order 
at ( )sx . The centers of curvature of c  form a curve called the evolute of c . For a curve 

( )c t: =x x  parameterized by t , one obtains 
 

{ } { }3 22 2
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tx x x x x xκ = − + .� �� �� � � �      (3) 

 
Here is an example: The locus of a fixed point on the circle of radius a  rolling on 1x -
axis is called the cycloid and given by 1 2( ) ( sin ) ( ) (1 cos ) 0 2x t a t t x t a t t π= − , = − , ≤ ≤ . 
Its arc length and curvature are respectively ( ) 2 {1 cos( 2)}s t a t= − /  and 

( ) 1 {4 sin( 2)}t a tκ = − / / . The evolute of a cycloid c  defined for t−∞ < < ∞  is again a 
cycloid that is congruent to c .  
 
What is the meaning of curvature? It appears in the Frenet formula: 
 

1 21 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s s s s s s sκ κ= , = , = −x e e ee e� � �      (4) 
 
that controls the local behavior of the Frenet frame and the curve itself. Now an angle 

( )sθ ∈R  between the unit tangent vector ( )sx�  to c  and a fixed unit vector may be 
defined so that ( )s sθ→  is of class 1kC −  and one has 

( ) (cos( ( ) ) sin( ( ) ))s s sθ α θ α= + , +x� . Then ( ) ( )s sκ θ= �  holds, i.e. curvature is an 
intrinsic invariant of a curve. Indeed, curvature determines the curve: Suppose a 2kC − -
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function ( )sκ  is given on [0 ]L, . Then there exists a unique kC -curve ( )c s: =x x  in 
2\  parameterized by arc length with ( ) ( )c s sκ κ≡ , up to parallel translations and 

rotations of 2\ . In the standard case of ( ) 0sκ ≡  (resp. ( ) 0s kκ ≡ ≠ ), c  is a (part of a) 
straight line (resp. circle of radius 1 k ). A curve given by the equation ( )s s aκ = /  ( a ; 
a nonzero constant) is called a clothoid that describes the trajectory of a car running 
with unit speed and an increasing acceleration of the constant rate, and applied to the 
design of highways. 

 

 
 

Figure 1. Cycloid and its evolute (left); clothoid (right) 
 
Let 2[0 ]c L: , → \  be a closed curve, i.e. ( ) ( )(0) ( )k k L=x x  hold for k -th derivatives 

( 0 2k≤ ≤ ). The integral 
0

( )
L

s dsκ∫  is called the total curvature of c , and the rotation 

number of c  is given by 
0

(1 2 ) ( )
L

s dsπ κ/ ∫  that turned out an integer. For a simple (i.e. 

without self-intersection points) closed curve c , the rotation number is equal to 1± , and 
two closed curves are deformed to each other (by regular homotopy) if and only if they 
have the same rotation number. A simple closed curve c  admits at least four vertices at 
which the derivative ( )sκ�  vanishes.  
 
Space curves 
A curve c  in Euclidean space ( ){ }3

1 2 3 ix x x x= , , ∈\ \  is given by 
 

1 2 3( ) ( ( ) ( ) ( ))t x t x t x t a t b= , , , ≤ ≤x        
 (5) 
 
using a parametric representation. It is assumed that ( )ix t (1 3)i≤ ≤  are of class 

kC ( 3k ≥ ) and the acceleration vector 1 2 3( ) ( ( ) ( ) ( ))t t t tx x x= , ,x�� �� �� ��  is linearly independent 
of the tangent vector 1 2 3( ) ( ( ) ( ) ( ))t t t tx x x= , ,x� � � � . Arc length ( )s s t=  is defined by (2) and 
one gets the parameterization of c  by arc length. Then 1( ) ( )s s=e x�  is a unit vector and 

( )sx��  is orthogonal to ( )sx� . Now the curvature ( )( ( ))cs sκ κ=  of a space curve c  is 
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defined as ( )sx��  that is assumed to be positive. Set 2 ( ) ( ) ( )s s sκ= /e x��  and consider the 
vector product 3 1 2( ) ( ) ( )s s s= ×e e e . One obtains a (positive) orthonormal basis 

1 3{ ( )}i is ≤ ≤e  called the Frenet frame at each point ( )sx  of the curve. Then the following 
Frenet-Serret formula 
 

1 2

2 1 3

3 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

s s s
s s s s s
s s s

κ
κ τ

τ

=⎧
⎪ = − +⎨
⎪ = −⎩

ee
e ee

ee

�
�
�

       (6) 

 
holds, where 2

2 3( )( ( )) ( ) ( ) det( ( ) ( ) ( )) ( )cs s s s s s s sτ τ= = , = , ,e x x x xe � �� ��� ���  is called the 
torsion of c  ( det  means the determinant of 3 3× -matrix formed by the components of 
three vectors). The curvature and the torsion of a curve ( )t=x x  parameterized by t  are 
given by 
 

3 2( ) ( ) ( ) ( ) ( ) det( ( ) ( ) ( )) ( ) ( )t t t t t t t t t tκ τ= × , = , , × .x x x x x x x x� �� � � �� ��� � ��   (7) 
 
Once ( ) 0 ( ) (0 )s s s Lκ τ> , ≤ ≤  are given, there exists a unique curve c  parameterized 
by arc length with ( ) ( ) ( ) ( )c cs s s sκ κ τ τ= , = , up to parallel translations and rotations of 

3\ . c  is a plane curve if and only if its torsion vanishes everywhere, and a curve with 
constant curvature ( ) 0s aκ ≡ >  and constant torsion ( ) 0s bτ ≡ ≠  is congruent to a 
regular helix given by 
 

2 2 1 2 2 2 2 2 2( ) ( ) ( cos( ) sin( ) )s a b a a b s a a b s b a b s−= + + , + , + .x  
 
For the total curvature 

0
( )

L

c s dsκ κ= ∫  of a closed curve ( ) (0 )c s s L: = ≤ ≤x x , 2cκ π≥  

holds . Moreover if c  is a knot, 4cκ π>  holds .  
 
2. Surfaces in Euclidean Space 
 
Fundamental forms and curvature 
In nature one sees various curved surfaces and nowadays curved surfaces are put use to 
designs, e.g. for cars. In differential geometry, one treats parameterized surface S  
given by a map 
 

3
1 2 1 2 1 1 2 2 1 2 3 1 2( ) ( ) ( ( ) ( ) ( ))D u u u u x u u x u u x u u: ∋ , , = , , , , , ∈x x6 \    (8) 

 
from a domain D  of 1 2u u -plane into 3\ , where 1 2( )ix u u, (1 3)i≤ ≤  are functions of 
class kC ( 2k ≥ ). For example, the graph of a function 3 1 2( )x f x x= ,  is expressed as 

1 2 1 2 1 2( ) ( ( ))x x x x f x x, → , , , . The sphere 2 2 2 2
1 2 3x x x r+ + =  of radius r  is given by 

1 1 2 2 1 2 3 1 1 2cos cos cos sin sin 2 2 0 2x r u u x r u u x r u u uπ π π= , = , = ;− / < < / , ≤ ≤ .  To 
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guarantee that S  is a 2-dimensional figure, one takes curves 1 1 2( )u u u,x6 , 

2 1 2( )u u u,x6  on S  fixing 2 1u u,  respectively and assumes that the tangent vectors to 
these parameter curves 
 

31 2
1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) , ( 1 2)

iu
i i i

xx xu u u u u u u u i
u u u

⎛ ⎞∂∂ ∂
, = , , , , , = ,⎜ ⎟∂ ∂ ∂⎝ ⎠

x  

 
are linearly independent and span the tangent plane pT S  to S  at each 1 2( )p u u= ,x . 
Namely, the vector product 

1 21 2 1 2( ) ( ) 0u uu u u u, × , ≠x x  everywhere, and one may take 
 

1 2 1 21 2 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )u u u uu u u u u u u u u u, = , × , , × , ,e x x x x     (9) 
 
a unit normal vector to S . 3D: →x \  is assumed to be injective on D .  
 
Now the scalar product is induced on each pT S . In terms of the first fundamental 
quantities  
 

12 21( 1 2 )
i jij u ug i j g g= , , = , ; =x x        (10) 

 
it is given by 2

1 2 1 ij i ji j
g a bξ ξ

, =
, = ∑  for 2 2

1 21 1i ii u i u pi i
a b T Sξ ξ

= =
= , = ∈∑ ∑x x . One may 

consider the norm of a vector and the angle between vectors in pT S . For example, if a 

curve c  on S  is given by 1 2[ ] ( ( ) ( ))a b t u t u t, ∋ ,x6 , where 1 2( ( ) ( ))t u t u t,6  is a kC -

curve in D , one has 
1 2

2
( ( ) ( ))1

( ) ( )
ii u u t u ti

t t T Su ,=
= ∈∑ xx x� � . Then 2( ) ( ) ( )i jijt g t tu u= ∑x� � �  

holds and the length ( )L c  of c  is given by (2). The scalar product on pT S  doesn’t 
depend on parameterizations of the surface S , and a quadratic form 

22
1 ij i ji j

ds g du du
, =

= ∑  on pT S  is called the first fundamental form. The area of S  is 

given by 
 

1 2( ) where det( )ijD
A S dS dS g du du= = .∫∫      (11) 

 
The Gauss map 2G S S: →  is defined by assigning the unit normal vector 1 2( )u u,e  to 
each point 1 2( )p u u= ,x  of S , where 2S  denotes the unit sphere in 3\ . To see how the 
unit normal vector e  behaves on S , the second fundamental quantities are introduced 
by 
 

12 21( 1 2 )
i j i j j iij u u u u u uh i j h h= , = − , = − , , = , ; = .x e x e x e    (12) 

 
Then for a fixed point 1 2( )p u u= ,x  of S , the signed distance from a nearby point 
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1 1 2 2( )u du u du+ , +x  to the tangent plane pT S  is controlled by half of 
2

1 21
( )ij i ji j

I I h u u du du
, =

= ,∑ . II  is called the second fundamental form of S , and is 

preserved under orientation preserving parameter transformations of S . If II  is definite 
at p , i.e. its discriminant 2

12 11 224( ) 0D h h h= − < , S  lies on a one side of pT S  around p  

where p  is called an elliptic point. If 2
12 11 224( ) 0D h h h= − >  at p , S  is located on both 

sides of pT S  where p  is called a hyperbolic point. 
 
Now to measure how S  is curved in 3\  around a point p S∈ , take curves 

1 2( ) ( ( ) ( ))c s s u s u s: = ,x x6  on S  parameterized by arc length with (0) p=x . For such 
a curve, the normal component of (0)x�� , called the normal curvature, is given by 
 

2 2 2

1 1 1
(0) with (0) 1

in ij i j i u ij i ji j i i j
h gκ ξ ξ ξ ξ ξ

, = = , =
= , = = , = .∑ ∑ ∑x e x x�� �   

 
One considers the minimum and the maximum of normal curvatures ij i ji j

h ξ ξ
,∑  at p  

under the condition 1ij i ji j
g ξ ξ

,
=∑  that are called the principal curvatures of S  at p . 

Now the mean curvature ( )SH H=  and the Gaussian curvature ( )SK K=  of S  at p  
are defined as the arithmetic mean and the product of principal curvatures, respectively. 
They are given by 
 

1
11 22 22 11 12 12

det( ) det( )

( 2 ) {2det( )} tr(( ) ( )) 2
ij ij

ij ij ij

K h g H

g h g h g h g g h−

= ,

= + − =
 (13) 

 
where 11 22tr( )ija a a= +  is the trace. Gaussian curvature (resp. mean curvature) is 
invariant under (resp. orientation preserving) parameter transformations of S . For a 
plane one gets 0K H= = , and for a sphere of radius r , 21 1K r H r= / , = /  hold. Note 
that if ( ) 0K p >  (resp. 0< ), p  is an elliptic (resp. hyperbolic) point. There are variety 
of flat (i.e. 0K ≡ ) surfaces. Flat surfaces (with 0H ≠ ) obtained as a family of lines 
(ruled surfaces) are called developable surfaces including cones, circular cylinders, and 
tangent surfaces (consisting of tangent lines to a space curve). A surface of revolution 
given by rotating a curve 1 1 3 1( ) ( )x f u x g u= , =  in 1 3x x -plane around 3x -axis is a typical 
surface for which K H,  take simple forms.   

 

 
 

Figure 2. Gaussian curvature ( 0K > , 0K < , 0K ≡ ) 

326



MATHEMATICS: CONCEPTS, AND FOUNDATIONS – Vol. I - Differential Geometry - Takashi Sakai  

©Encyclopedia of Life Support Systems (EOLSS) 

Now a surface S  with 0H ≡  is called a minimal surface, since such an S  is stable with 
respect to the area. Belgian physicist J. Plateau verified experimentally that soap film 
obtained by dipping a wire form in soap solution has such a property. A surface of 
revolution given by 1 3coshx x=  is a typical example of minimal surface called the 
catenoid. Minimal surfaces have been extensively studied in relation to partial 
differential equations and function theory of a complex variable: For example, if 

2f : →\ \  is a 2C -function whose graph is a minimal surface, then f  is a linear 
function (Bernstein theorem); minimal surfaces are represented by holomorphic and 
meromorphic functions defined on unit open disk D  (Weierstrass representation 
formula).   

 

 
 

Figure 3. Minimal surfaces (catenoid, Enneper surface, right helicoid) 
 
Intrinsic geometry of surfaces 
It is possible to express the Gaussian curvature K  in terms of the first fundamental 
quantities ijg  and their partial derivatives up to the second order, i.e. K  is an intrinsic 
geometric invariant of S , as was shown and called “Theorema Egregium" by Gauss. 
The length of a curve on S  is given by (2) in terms of ijg , and then the intrinsic 
distance between two points on S  is defined as the infimum of the lengths of curves on 
S  joining them. Gauss developed his surface theory based on the distance where the 
Gaussian curvature plays an important role. Now, a curve 1 2( ) ( ( ) ( ))t u t u tγ : = ,x x  on S  
such that the orthogonal projection of the acceleration vector ( )tx��  to ( )tT Sx  vanishes 
everywhere is called a geodesic. Then γ  proceeds straight on S  since it cannot feel any 
acceleration force on S , and satisfies 
 

2

1
( ) ( ) ( ) 0 ( 1 2)i

i j kjkj k
t t t iu u u, =
+ Γ = = ,∑�� � �   

 
where 1( ) 2 ( ) ( )k kl ij

ij il j jl i ij l ijl
g g g g g g −

, , ,Γ = + − / ; =∑  and “ k, " denotes the 

differentiation with respect to ( 1 2)ku k = , . A geodesics γ  exists at least for small t , 

once the initial point and direction are given, where ( )tγ�  is constant. Now for a 
geodesic triangle Δ  (a simply connected domain in S  bounded by a closed curve 
consisting of three geodesic segments), A B C, ,  denote the (inner) angles of Δ . Then 
one obtains the Gauss-Bonnet formula: 
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A B C KdSπ
Δ

+ + − = ∫∫         (14) 

 
If 0K ≡  this is a familiar theorem that the sum of angles of a triangle in Euclidean 
plane is equal to π , and if 0K >  (resp. 0K <  ) on Δ  the sum of angles of a triangle is 
greater (resp. less) than π . Indeed a surface S  with 1K ≡ −  gives a local model for 
hyperbolic geometry, although the whole hyperbolic plane cannot be realized as a 
surface in 3\ .  
 
In the above one considered a piece of a surface, and now wants to define the whole 
surface. A subset S  of 3\  is called a regular surface of class kC  if the following holds: 
For each point p S∈  there exist an open neighborhood U  of p  in 3\  and a 
parameterized kC -surface 3D: →x \  that is a homeomorphism from D  onto U S∩  
with the relative topology. Thus each point of S  admits a coordinate system (or chart) 
given by a homeomorphism 1 2U S D− : ∩ → ⊂x \ , and the whole S  is described by an 
atlas consisting of such charts. For two charts 1( )i iU S −∩ ,x ( 1 2)i = ,  representing a point 
of S , the coordinate transformation is given by 1 1 1

2 1 1 1 2 2 1 2( ) ( )U U U U− − −: ∩ → ∩x x x xD  
that is a kC -map between domains of plane. A compact regular surface is called a 
closed regular surface (e.g. sphere, torus T  that is the surface of a doughnut, and the 
surface kΣ  of a doughnut with k  holes). Dividing a closed regular surface S  into 
finitely many geodesic triangles and applying the Gauss-Bonnet formula, one obtains 
the Gauss-Bonnet theorem representing a topological invariant ( )Sχ , the Euler 
characteristic of S , in terms of Gaussian curvature (note that ( ) 2(1 )k kχ Σ = − ): 
 

1( ) .
2 S

S KdAχ
π

= ∫∫          (15) 

 
Here are some global results that characterize the sphere: If the Gaussian curvature K  
of a closed surface is equal to a constant r , then 0r >  and S  is a sphere of radius 1 r/  
. If the mean curvature K  of a closed surface is equal to a constant h , then 0h ≠  and 
S  is a sphere of radius 1 h  . A closed regular surface S  in 3\  admits an elliptic point. 
If 0K >  everywhere, S  is homeomorphic to sphere and called an ovaloid, since S  lies 
on the one side of pT S  at each p S∈  and bounds a convex set of 3\ .  
 
3. Differentiable Manifolds 
 
Manifolds 
The notion of manifold was introduced by B. Riemann in 1854 to set a foundation of 
geometry, i.e. how to grasp the concept of space that locally looks Euclidean space, but 
may spread manifold in curved manner and be of higher dimension. In the language of 
modern mathematics, manifold is defined as follows: Let M  be a Hausdorff topological 
space. A pair ( )U φ,  of an open set U  of M  and a map nUφ : →\  is called a chart 
with coordinate neighborhood U , if φ  is a homeomorphism onto an open subset of 
Euclidean space n\ . A family of charts {( )} AUα α αφ ∈= ,A  is called an atlas of M  if 
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